OpenROAD Application Startup Performance

Page 1 of 4

OpenROAD Application Startup Performance

Overview

OpenROAD applications are often complex and require other included applications in order to run. As applications and their included applications become larger and more complex, it may take longer and longer for the initial frame to be retrieved from the application image files and started. Eventually this lag in time between starting the application and viewing its first frame may be considered a performance problem.

The purpose of this paper is to describe the processes the OpenROAD runtime system goes through when starting to run an OpenROAD image file. By understanding these processes one may gain some insight into performance-related problems associated with starting OpenROAD applications and how to solve them.

The scope of this paper has been limited to the processes that occur from the time the w4glrun or w4gldev command is issued to the command prompt until, but not including connecting to databases and the actual running of the first frame or procedure. These processes are commonly referred to as image instantiation. Understanding the terms defined in the Glossary at the end of this document is vital to understanding this paper.

Background

The Image File Layout

Prior to describing the image instantiation process, a brief description of how encoded symbols and objects are generated and written to the image file (via the makeimage utility) needs to be offered. Before an image file can be generated, the relationships between all application objects needs to be translated from memory address references (object pointers) to unique integer identifiers. This is done by traversing the application’s symbol table, and for each address of an object, generating a unique integer identifier. The addresses and their associated integer identifiers are entered into a hash table. When an object is to be encoded into the image file, the object is checked to see if it references (is dependent on) other objects. If an object contains a reference to another object, the address of the object being referred to is looked up in the hash table and the associated integer identifier is returned. The integer identifier is then “plugged” into the slot that formerly contained the referred to object’s memory address. Once all object references in a given object are translated to integer identifiers the object is considered “flattened” and ready to be written to the image file via an encoding process. The encoding process writes all static and dependent objects identifier information related to a given object to the image file. Encoded objects are written to the image file in object identifier number order, from 1 to the highest number.

The image file layout is designed so that an image can be instantiated with the least amount of disk I/O. An image file contains two initial encoded objects that are all that is needed to instantiate the application. The first object is an Image Header object that stores information on the OpenROAD version number and a file pointer to where the second object starts. The second object is the Application Source object (APPSOURCE system class). An APPSOURCE object contains information such as the default database to be connected to, other included applications, the application symbol table, and most importantly for the sake of this discussion, all the encoded symbol objects that are to be placed into the application symbol table. Symbols related to executable components contain encoded file pointers that are used to fetch the components when they are initially run. The encoded application frame, userclass, and procedure source objects that may need to be loaded and executed once the application is instantiated and running follow the Image Header and APPSOURCE objects. When one if these executable source objects need to be loaded, the symbol is retrieved from the symbol table using the object’s name. The retrieved symbol contains a file pointer that is used to determine where physically in the image file the object’s source object is located. Using this file pointer the appropriate source object is fetched, a PROCEXEC (the executable form of a source object) object is instantiated from the source object, and a “Fetching xxx from image” message will be written to the Trace Window. Executable source objects are not fetched until they are needed (when they are called or otherwise referenced), and once fetched they are placed in a cache.

Image Instantiation

Image instantiation, as has been mentioned earlier, involves reading portions of image files, picking out the APPSOURCE objects and converting the APPSOURCE objects to APPEXEC objects, and optionally connecting to a database. This is essentially everything that occurs from the time the w4glrun or w4gldev command is invoked from a command prompt to the time the first frame or procedure in the application is run (i.e. when the first “Fetching xxx from image…” is displayed in the trace window.). Assuming that database connections are made in a timely fashion, the difference in startup times between two applications (and their included applications) is almost entirely due to the number of encoded symbols that each must decode and place in their respective symbol tables. It is this symbol decoding process, and the process of including the symbols from included applications, that will be the primary topic of discussion for the remainder of this paper.

The process of decoding an APPSOURCE object‘s symbols and placing them in the application’s symbol table is straightforward. An array is allocated in order to hold all the addresses of the decoded symbols. Starting physically within the image file where the first encoded symbol is written, the symbols are read, decoded, and their addresses are placed in the allocated array, one after another, in the order they physically appear, until all the symbols have been processed. For each encoded symbol, the first thing read is an ASCII string naming the symbol’s class name. Once a symbols class is known, memory for the named class is allocated (this address is what is put into the array). Once the class is allocated, a method specific to that class is called to further decode it. Further decoding involves reading more ASCII strings (for things such as object’s name), integers (for things like the object identifiers of related objects (the object identifier is the index into the allocated array) and default values), and arrays of integers. When a decoding method completes the process moves on to the next object to be decoded. Once all objects are decoded and placed into the array, they need to be “unflattened”. Unflattening an object means substituting all of its remaining integer object identifiers with their true addresses. The allocated array is processed from beginning to end. Each object in the array has an unflattening method that is responsible for knowing what entities within the object refer to a related object. This method merely replaces the integer object identifier with the address contained within the allocated array, using the object identifier as the array index. Once all of the symbol objects are decoded and unflattened, the image instantiation is essentially complete.

Completing the image instantiation process to the point that the application can actually be run involves performing symbol decoding and unflattening for additional included applications if they exist (included applications are an attribute of the APPSOURCE object, which as we know, has already been decoded). Included applications may also contain other included applications. If an application contains included applications, the application’s symbol table is supplemented with the included application’s symbols by having the included application’s symbol table placed in an array of symbol tables that the application scans whenever it needs to lookup a symbolic reference. The position a symbol table has in this array of symbol tables determines the order in which its symbols will be resolved by the calling application. For example: an application named AppA includes two applications AppB and AppC, with AppC and AppB both containing a function named FuncA. AppB is defined to be below AppC in the APPSOURCE for AppA. If a frame in AppA calls function FuncA, the function FuncA in AppC will be called, as it is higher in the search order. Should, in the course of processing included applications, the same included application appear more than once in the hierarchy of included applications (a given application is included in more than one other included application), that application’s symbols will only be decoded once.

Concluding Discussion

The process of resolving an application’s symbol tables is the primary activity that occurs when starting an OpenROAD application. The amount of time spent in this process is directly related to the total number of symbols that exist in the application and its included applications. Because symbols are created for each frame, procedure, global variable, global constant, userclass, userclass attribute, and userclass method, the average application developer is unaware of how many symbols truly reside in an application, much less its included applications. As a final result, some applications may appear to take a long time bring up their initial frames or call their first procedures. A developer facing a situation where an application takes a long time to fetch and run its first frame may propose that OpenROAD be changed so that it resolves symbols in included applications “on-the-fly”, meaning when it first encounters an unresolved symbol reference.

Unfortunately for the application developer (or fortunately for the OpenROAD runtime system) all application symbol tables must be resolved prior to being able to run an application. Specifically, all symbols residing in an application’s included applications must also be resolved prior to an application calling its first frame or procedure. An application uses an array of system tables to resolve symbolic references. Each system table in this array represents all the symbols contained in the APPSOURCE object for a given application or included application. A running application determines the image file containing a needed object from the symbol table in which the object’s symbol was found. By using the symbol’s image file byte offset value, the application can retrieve the object represented by the symbol from the proper place in the proper image file. If all the symbols were not resolved prior to running the first frame or procedure, and a subsequent call were made to an executable object not residing in the application’s cache, the application would have no way to determine in which application image file the needed object resides. This would require the application to process its own image file’s APPSOURCE object and that of each and every included until the required symbol was found and subsequently used to locate the object’s position in the appropriate image file. Because the symbol resolution process is potentially expensive, performing it more than once at runtime would certainly have a profoundly negative effect on application performance.

The best way to reduce the amount of time it takes to start an application is to reduce the number of symbols the application contains. Many programming organizations create “toolbox” applications that contain modules that can be shared by other applications. Included applications may also be created to model specific business objects and processes. If an application includes many other applications, and startup time is unacceptable, the included applications need to be analyzed for excess unneeded symbols. If an application only needs a subset of the functionality in another included application, then a case can be made that the included application contains excess functionality and should be split into smaller applications. If userclasses are used extensively, they should be kept to a minimum (not only is there a symbol for the userclass itself, but symbols for each and every attribute and method) and take advantage of inheritance (each inherited attribute or method reduces the number of symbols for a given userclass).

Reducing the number of symbols in an application that suffers from poor startup performance may not be feasible. In addition, reducing the number of symbols may not adequately boost application startup performance. For applications in the former and latter categories one may be able to restructure a monolithic application’s functionality into smaller autonomous applications. The smaller autonomous applications would likely use a subset of the original monolithic application’s included applications and require fewer symbols to be resolved. In situations where a discrete portion of the monolithic application’s functionality is rarely used, restructuring that portion into another application with its own unique symbols especially makes sense.

In conclusion, OpenROAD developers need to know the extent of the objects contained in each application and how it relates to application startup performance. The OpenROAD runtime system has the capability to monitor a wide variety of its internal processes. It would be very useful for tracing information related to symbol creation, and the amount of time spent populating each application’s symbol table, be made available to OpenROAD developers.

Glossary

1) OpenROAD image file

A binary file created by the OpenROAD makeimage utility. This file

contains all the encoded objects developed within a given application

that are required by the OpenROAD interpreter. An OpenROAD image file contains a brief header (which contains OpenROAD version information), an application source object (which contains application specific information defined by the developer and all the encoded symbols needed by the application), followed by the encoded source code for all the executable frames, userclasses, and procedures.

2) Included application
OpenROAD allows developers to include the encoded objects contained in other OpenROAD applications in the application they are currently developing. This promotes modular code development.

3) w4glrun and w4gldev
The commands used to run OpenROAD runtime and development modes respectively.

4) Image instantiation
The processes by which OpenROAD reads an image file, prepares an APPEXEC object (application executable object) from an APPSOURCE (application source object), and prepares the application’s APPEXEC object for running frames or procedures.

5) Symbols
OpenROAD locates and resolves all objects required by an application by assigning these objects a symbol reflecting the type of object. Most symbols contain information such as data type, data length, and location of the actual data in the application. Some symbols, in cases where their associated object is related to and/or dependent on other objects, contain information referring to parents, siblings, and children. Finally, symbols referring to frames, procedures, Userclasses and other executable application components contain a pointer that indicates where in the image file the executable component can be found.

6) Symbol Table
Every OpenROAD image has a table within which all symbols are stored. This table is a hash table and is populated when the image is loaded during image instantiation.

7) Encoded Objects and Symbols
OpenROAD stores all application components in an encoded form in image files. OpenROAD applications during runtime consist of a complex hierarchy of objects, many of which contain address references to their parent, sibling, children or other dependent objects. By encoding objects in a “flattened” form, where objects are encoded in the order in which they need to be resolved, the runtime hierarchy and related addresses can be recreated during image instantiation. Image instantiation for the most part merely means resolving the symbols in the order they were written into the image file and placing the symbols in the application’s symbol table for later use.

OpenROAD_Application_Startup.doc
3/6/2001

