

Release Summary
4.1

OpenROAD


This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2001 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents iii

 Contents

Chapter 1: OpenROAD 4.1/0109 Enhancements
Installer Enhancements.. 1-1

Installation of the Application Server ... 1-2
Upgrade of Enterprise Access .. 1-2
Installation of JDBC ... 1-2
Running VASA in a Runtime-only Installation ... 1-2
Determining Whether a Reboot Is Recommended .. 1-3
Installation of Thin Client Demos ... 1-3

Speed Keys Supported .. 1-3
New System Classes .. 1-4

DecimalObject Class... 1-5
Precision Attribute .. 1-5
Scale Attribute .. 1-5
Value Attribute ... 1-6

KeyDownData Class .. 1-6
IsExtended Attribute .. 1-6
Modifiers Attribute.. 1-6
PreviousState Attribute .. 1-7
ScanCode Attribute.. 1-7
VirtualKey Attribute... 1-8

New Events .. 1-9
ChildKeyDown Event ... 1-9
KeyDown Event ... 1-10

New Attributes .. 1-11
EntryField Class ... 1-11

ExitBehavior Attribute .. 1-11
FrameExec Class ... 1-12

iv Release Summary

NextTargetField Attribute ...1-12
Object Class..1-12

InstanceIdentifer Attribute...1-13
InstanceReferences Attribute...1-13

SessionObject Class ...1-13
ProcessWait Attribute ...1-13
ProcessWindow Attribute ...1-14

New Methods..1-14
LongByteObject Class ...1-14

ConvertFromString Method ...1-14
StringObject Class ..1-15

ConvertFromBinary Method ...1-15
Application Server ...1-16

Authorized Applications Only ...1-16
Forced Shutdown...1-16
DPO...1-16
SPO Launch Permissions ..1-17

Workbench ..1-17
Application Workbench Frame ..1-17
Edit Connections Profile Frame ..1-18
Script Editor Frame ...1-18
Reporter Query Editor Frame ..1-18
Reporter Component ...1-18

OpenROAD Runtime ...1-18
ExtObjects ...1-18
Reporter ...1-19
TableFields ..1-19

Demos ..1-19
UNIX..1-19
Windows ..1-19

VASA ...1-20
SPO Details Pane ...1-20
ASO Details Pane...1-20
Disable New Connections ...1-20
Auto-Suspend..1-20
Stateless Application Housekeeping ..1-21
User-Defined Procedure - iiasohousekeep...1-21
Support for RP_LOCAL ...1-21

ASOLIB ...1-21
COM Errors..1-21
NameServer ...1-21

Contents v

XML-in ... 1-22
XML-out .. 1-22
Pre-process, post-process User-Written Routines for XML-in, XML-out........................ 1-22
Load Balancing .. 1-22

UNIX ... 1-22

Chapter 2: OpenROAD 4.1 New Features
Property Option Menu Enhancements .. 2-1
TableField Enhancements.. 2-1
Keystroke Events on EntryFields ... 2-1
Auto-completion for OptionFields.. 2-2
New Field Styles.. 2-2
SizeGrip ... 2-2
True Type Fonts .. 2-2
Button Styling .. 2-2
Progress Bars... 2-2
Group Boxes ... 2-3
Wizard Frames ... 2-3
Icon Images .. 2-3
24-bit Color Bitmaps .. 2-3
System Color Remapping.. 2-3
RGB Color support.. 2-4

RGB Function... 2-4
Drag and Drop ... 2-5
Standard Toolbars Bitmaps .. 2-5
Flat Toolbars w/ Hot tracking ... 2-6
Spin Controls... 2-6
Date Picker... 2-6
CompositeField Enhancements... 2-6
ActiveX Error Handling Enhancements ... 2-7
Userclass Object Allocation Limit Increase .. 2-7
Report Writer Conversion to OpenROAD ... 2-7
StackField Separator (Screen divider) ... 2-7
Minimizing Informational Messages in Trace Windows .. 2-8
Destroy a Single Component Flag in DestroyApp .. 2-8
Reporter API Documentation .. 2-8
Make Defining Break Columns Optional in Reporter ... 2-8
New OpenROAD Workbench Startup Options .. 2-9

vi Release Summary

Chapter 3: OpenROAD 4.1 Demo Overview
Active Server Page Demo .. 3-1
SISUI Demo .. 3-2
Meeting Point Tutorial Demo... 3-2
Object Factory Demo .. 3-2

Chapter 4: Application Server Support for OpenROAD 4.1
Utilizing COM .. 4-1
4GL Remote Procedure Calls ... 4-2
Automation Types .. 4-2
Fixed Signature, Dynamic Data ... 4-2
Structured Data ... 4-3
The Remote Server Object .. 4-4
The Parameter Data Object ... 4-4
The 4GL REMOTESERVER System Class .. 4-4
Private Server, Shared Server... 4-5
Visual ASA ... 4-6
Application Server Object Library (ASOLib) ... 4-7

Chapter 5: Reporter Enhancements
Enhanced Runtime Support .. 5-1
Changes to Reporter ... 5-3

Main Menu ... 5-3
Query Editor .. 5-3
Variable List Frame .. 5-4
Variable Properties Frame .. 5-4
Print Dialog... 5-5
Reporter Procedure Tool ... 5-5

Reports Using Image Trim.. 5-5
Report Procedure Tool... 5-7

Dynamic Procedure List.. 5-7
Database/Application Information.. 5-8
Report List.. 5-8
Menu Bar ... 5-9

Contents vii

File .. 5-9
View ... 5-9
Reports.. 5-10
Images .. 5-12
Options ... 5-13

Tutorial ... 5-13
Before You Begin... 5-13
Using the Procedure Tool ... 5-14
File Names .. 5-14
Saving Report Procedures... 5-14
Running Report Procedures... 5-15
Importing Reports to Target Applications .. 5-15
Working With Image Trim .. 5-16

Image Directories .. 5-16
Image Servers.. 5-16

Call Interface to Dialog Frames and Reporter Procedures .. 5-18
Calling via Dialog Frame ... 5-18

Optional Parameters.. 5-18
Calling A Report Procedure ... 5-19

Required Parameters ... 5-19
Optional Parameters.. 5-19

Chapter 6: Upgrading from OpenROAD 3.5 to 4.1
Rule 1 ... 6-1
Rule 2 ... 6-1
Rule 3 ... 6-2

Chapter 7: Virtual Key Values
Virtual Key Values.. 7-1

OpenROAD 4.1/0109 Enhancements 1–1

Chapter

1
OpenROAD 4.1/0109
Enhancements

This guide describes new features or enhancements for OpenROAD.

This chapter outlines the following features found in the 4.1/0109 maintenance
release of OpenROAD:

■ Installer Enhancements

■ Speed Keys Supported

■ New System Classes

■ New Events

■ New Attributes

■ New Methods

■ Application Server

■ Workbench

■ OpenROAD Runtime

■ Demos

■ VASA

■ ASOLIB

■ UNIX

Installer Enhancements
The following installer enhancements have been made in this release:

■ Installation of the Application Server

■ Upgrade of Enterprise Access

■ Installation of JDBC

■ Running VASA in a Runtime-only Installation

■ Determining Whether a Reboot Is Recommended

■ Installation of Thin Client Demos

Installer Enhancements

1–2 Release Summary

Installation of the Application Server

The files necessary to run an Application Server client have been made part of
the OpenROAD Runtime component. The Application Server component need
only be selected if a server is in fact needed. The server is only supported on
Windows NT and Windows 2000. If it were previously installed on Windows 95
or Windows 98 using the OpenROAD 4.1 GA installer, it will be removed by the
MR installer.

The Application Server installer (asreg.exe) will now detect whether the
Application Server has previously been installed. Access permissions will not be
modified if the Application Server has been previously installed. SPO
permissions have been corrected so that only SYSTEM will be granted SPO
Launch permissions by asreg.

The Domain Portal (DPO) is no longer utilized. It will not be installed or
registered in a new installation, and it will be removed and unregistered in
existing installations.

Note: Asreg is now only run on Windows NT and Windows 2000. There is no
need to run this program on Windows 9x.

Upgrade of Enterprise Access

Enterprise Access to Oracle, Sybase, Informix, and SQL Server can now
optionally be upgraded to versions EA 2.1 or EA 2.6 using the OpenROAD 4.1
MR installer, if a prior version of that product has been installed.

Installation of JDBC

In the OpenROAD 4.1 GA installer, the files necessary to install JDBC were
provided. However, the product was not installed automatically. As of the
OpenROAD 4.1 MR installer, JDBC will be installed along with Ingres/Net.

Running VASA in a Runtime-only Installation

The Visual ASA (VASA) shortcut created by the InstallShield installer now
executes via the OpenROAD Runtime executable w4glrun.exe, rather than
w4gldev.exe. This enables VASA to be started in a Runtime-only installation.

Speed Keys Supported

OpenROAD 4.1/0109 Enhancements 1–3

Determining Whether a Reboot Is Recommended

The installer was designed to advise the user as to whether a reboot of their
system was recommended after running the installer, specifically if a locked file
were found or the autoexec.bat file needed to be read. Occasionally the user was
not prompted to reboot when a locked file was found (usually on applying a
patch), or was incorrectly advised to reboot when Ingres was installed on a
system without an autoexec.bat, specifically, Windows 2000 or Windows NT.
These cases have been corrected.

Installation of Thin Client Demos

Previously some of the files used by the web-based demos were distributed as
part of the thin client demo component. This has been corrected.

Speed Keys Supported
The OpenROAD keyboard map file is a text file with a specific format. The file
describes 23 OpenROAD system-defined keys, and 36 user-defined keys. The file
contains one line for each key with 4 entries for each line. The entries are
arranged in four columns separated by tabs. All of the columns are mandatory.

Since the contents of some columns require specific values, it is best to copy one
of the existing keyboard map files and use this file as a template if you wish to
modify the file or create a new one.

The following table describes the columns:

Column Description

1 Index that OpenROAD uses to map the key. It is read into memory
and must always match the text label in column 4. Do not change
the entries in this column.

Note: Do not change the entries in this column.

2 Text that appears in the pull-down menu for the speed key.

3 Virtual key name for key stroke that occurs.

4 Internal symbol name used by OpenROAD, which must match the
index in column 1.

Note: Do not change the entries in this column.

New System Classes

1–4 Release Summary

The following virtual key definitions can be used to define key strokes:
VK_BACK VK_TAB VK_RETURN VK_SHIFT VK_CONTROL
VK_MENU VK_PAUSE VK_CAPITAL VK_ESCAPE VK_SPACE
VK_PRIOR VK_NEXT VK_END VK_HOME VK_LEFT
VK_UP VK_RIGHT VK_DOWN VK_SCROLL VK_0
VK_1 VK_2 VK_3 VK_4 VK_5
VK_6 VK_7 VK_8 VK_9 VK_A
VK_B VK_C VK_D VK_E VK_F
VK_G VK_H VK_I VK_J VK_K
VK_L VK_M VK_N VK_O VK_P
VK_Q VK_R VK_S VK_T VK_U
VK_V VK_W VK_X VK_Y VK_Z
VK_NUMPAD0 VK_NUMPAD1 VK_NUMPAD2 VK_NUMPAD3 VK_NUMPAD4
VK_NUMPAD5 VK_NUMPAD6 VK_NUMPAD7 VK_NUMPAD8 VK_NUMPAD9
VK_MULTIPLY VK_ADD VK_SEPARATOR VK_SUBTRACT VK_DECIMAL
VK_DIVIDE VK_F1 VK_F2 VK_F3 VK_F4
VK_F5 VK_F6 VK_F7 VK_F8 VK_F9
VK_F10 VK_F11 VK_F12 VK_F13 VK_F14
VK_F15 VK_F16 VK_F17 VK_F18 VK_F19
VK_F20 VK_F21 VK_F22 VK_F23 VK_F24
VK_NUMLOCK VK_LSHIFT VK_RSHIFT VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU VK_INSERT VK_DELETE

If a key is defined in the mapping file it will activate if assigned to an actual
menu item. For example, if the VK_RETURN key is mapped to SK_USER1 and
SK_USER1 is not used, then it will not change any behavior. On the other hand,
if it is assigned to a menu item attached to the frame, then it will override the
default behavior and raise that event block.

The same mapping is now used for all platforms. The older definitions in the PC
keyboard files will still work. Any keyboard file that used UNIX definitions will
have to be changed to use the new virtual key definitions.

Now 104 different key definitions are available. OpenROAD still has a limit of 59
slots available for speed key definitions which are active for the life of a session.

New System Classes
The following are new system classes:

■ DecimalObject Class

■ KeyDownData Class

New System Classes

OpenROAD 4.1/0109 Enhancements 1–5

DecimalObject Class

Description The DecimalObject class provides an object version of a decimal value. In most
circumstances, the simple decimal variable is the most efficient and useful form
of a decimal value. However, sometimes a decimal object is useful. For example,
because array row references in OpenROAD must be reference variables rather
then simple scalar variables, you cannot have an array that contains scalar
decimal elements. However, you can get the same functionality by using an
array of DecimalObjects and referring to the Value attribute of the DecimalObject
to get or set the data.

To perform operations on a decimal object, one must first set the object's
Precision and Scale attributes. After setting precision and scale, use the Value
attribute as follows:

DecimalObj.Value = 123.456

Inherits From Object

Inherited By None

Attributes Precision
Scale
Value

Methods None

Precision Attribute

Data Type integer

4GL Access RW

Description The Precision attribute has a default value of 31. This attribute determines the
total number of digits of the Value attribute.

Scale Attribute

Data Type integer

4GL Access RW

Description The Scale attribute has a default value of zero. This attribute determines the total
number of digits to the right of the decimal point of the Value attribute. The Scale
attribute cannot exceed 15.

New System Classes

1–6 Release Summary

Value Attribute

Data Type decimal

4GL Access RW

Description The Value attribute stores the value for a decimal object as a simple variable. You
can set this attribute to store a decimal value in the object and access the attribute
to retrieve the value.

KeyDownData Class

Description The KeyDownData class contains information about the key that caused the
KeyDown or ChildKeyDown event.

Inherits From Object

Inherited By None

Attributes IsExtended
Modifiers
PreviousState
ScanCode
VirtualKey

Methods None

IsExtended Attribute

Data Type integer

4GL Access R

Description This attribute is TRUE if the key is an extended key and FALSE otherwise.

Modifiers Attribute

Data Type smallint

4GL Access R

Description This attribute indicates which modifier keys are pressed at the time of the
KeyDown or ChildKeyDown event. The value of the Modifiers attribute allows
one to determine whether the key is modified by the Shift, Ctrl, or Alt keys, and
also allows one to distinguish between the left and right modifier keys.

New System Classes

OpenROAD 4.1/0109 Enhancements 1–7

This attribute contains bits that indicate which modifier keys are down. Three
bits indicate the state of the modifier keys without distinguishing between the
left and right keys:

1 Shift
2 Control
4 Alt

In addition to these bits, there are other bits that allow one to determine the state
of the left and right modifier keys.

16 Left Shift
32 Right Shift
64 Left Control
128 Right Control
256 Left Alt
512 Right Alt

Although the 4GL language does not provide for explicit bit testing, it can be
done using the mod function. For example, the following code tests to see if the
left control key is down (where KeyDown is a KeyDownData object):
if (mod(KeyDown.modifiers, 128) >= 64) then

 /* Left control key is down. */

else

 /* Left control key is up. */

endif;

PreviousState Attribute

Data Type smallint

4GL Access R

Description This is the previous key state bit from the WM_KEYDOWN or
WM_SYSKEYDOWN message.

ScanCode Attribute

Data Type integer

4GL Access R

Description This attribute contains the scan code associated with the key.

New System Classes

1–8 Release Summary

VirtualKey Attribute

Data Type integer

4GL Access RW

Description Contains the virtual key code for the key. Note that the code distinguishes
between the left and right shift, control, and alt keys. The virtual key codes for
these keys are:

Key Virtual Key Code

Left Shift key 160 (VK_LSHIFT)

Right Shift key 161 (VK_RSHIFT)

Left Control key 162 (VK_LCONTROL)

Right Control key 163 (VK_RCONTROL)

Left Alt key 164 (VK_LMENU)

Right Alt key 165 (VK_RMENU)

The developer can intercept a key down message and prevent further processing
of the WM_KEYDOWN or WM_SYSKEYDOWN message by setting the
VirtualKey attribute to zero in the KeyDown or ChildKeyDown event block, as
in the following example:
/* Note: the virtual key code for the A key is 65. */

on ChildKeyDown =
declare
 KeyData = KeyDownData default NULL;
 VirtualKey = integer not null;
enddeclare
begin
 KeyData = KeyDownData(CurFrame.MessageObject);
 VirtualKey = KeyData.VirtualKey;

 /* Do no further processing of the A key */

 if (VirtualKey = 65) then
 KeyData.VirtualKey = 0;
 endif;
end;

New Events

OpenROAD 4.1/0109 Enhancements 1–9

New Events
The following are new events:

■ ChildKeyDown Event

■ KeyDown Event

ChildKeyDown Event

Purpose The ChildKeyDown event is triggered whenever OpenROAD receives a
WM_KEYDOWN or WM_SYSKEYDOWN message. The event is not queued, but
is delivered immediately. Information about the key is stored in the
KeyDownData object, which is delivered to the 4GL program in the
MessageObject attribute of FrameExec. The 4GL event code has the opportunity
to stop further processing of the WM_KEYDOWN or WM_SYSKEYDOWN
message by modifying the KeyDownData object. To discard the message, the
developer should set the KeyDownData.VirtualKey to zero. The PrintScrn key
does not cause a ChildKeyDown event and no other events are generated in
conjunction with a ChildKeyDown event. In particular, the ChildKeyDown event
does not cause either a SetValue or a ChildSetValue event.

See the Virtual Key Values chapter for a listing of virtual key codes and their
values.

In the following example processing of the 'A' Key is stopped:
/* Note: the virtual key code for the A key is 65. */

on ChildKeyDown =
declare
 KeyData = KeyDownData default NULL;
 VirtualKey = integer not null;
enddeclare
begin
 KeyData = KeyDownData(CurFrame.MessageObject);
 VirtualKey = KeyData.VirtualKey;

 /* No further processing of the A key */

 if (VirtualKey = 65) then
 KeyData.VirtualKey = 0;
 endif;
end;

Syntax on ChildKeyDown

New Events

1–10 Release Summary

Attributes The following attributes of the FrameExec class can be used in the
ChildKeyDown event block:

Attribute Description

MessageObject A KeyDownData object that contains information about
the key that caused the ChildKeyDown event.

See Also MessageObject Attribute

KeyDown Event

Purpose The KeyDown event is triggered whenever OpenROAD receives a
WM_KEYDOWN or WM_SYSKEYDOWN message. The event is not queued, but
is generated immediately. Information about the key is stored in the
KeyDownData object, which is delivered to the 4GL program in the
MessageObject attribute of FrameExec. The 4GL event code has the opportunity
to stop further processing of the WM_KEYDOWN or WM_SYSKEYDOWN
message by modifying the KeyDownData object. To discard the message, the
developer should set the KeyDownData.VirtualKey to zero. The PrintScrn key
does not cause a KeyDown event and no other events are generated in
conjunction with a KeyDown event. In particular, the KeyDown event does not
cause either a SetValue or a ChildSetValue event.

See the Virtual Key Values chapter for a listing of virtual key codes and their
values.

In the following example processing of the 'A' Key is stopped:
/* Note: the virtual key code for the A key is 65. */

on KeyDown =
declare
 KeyData = KeyDownData default NULL;
 VirtualKey = integer not null;
enddeclare
begin
 KeyData = KeyDownData(CurFrame.MessageObject);
 VirtualKey = KeyData.VirtualKey;

 /* No further processing of the A key */

 if (VirtualKey = 65) then
 KeyData.VirtualKey = 0;
 endif;
end;

New Attributes

OpenROAD 4.1/0109 Enhancements 1–11

Syntax on KeyDown

Attributes The following attributes of the FrameExec class can be used in the KeyDown
event block:

Attribute Description

MessageObject A KeyDownData object that contains information about
the key that caused the KeyDown event.

See Also MessageObject Attribute

New Attributes
The following classes have new attributes:

■ EntryField Class

■ FrameExec Class

■ Object Class

■ SessionObject Class

EntryField Class

Attributes ExitBehavior

ExitBehavior Attribute

Data Type integer

4GL Access RW

Description The ExitBehavior attribute controls the action of the tab key and/or carriage
return key in an EntryField object. This attribute is ignored if the IsMultiLine
attribute is set to FALSE. If the IsMultiLine attribute is set to TRUE the following
values are valid for the ExitBehavior attribute:

Valid Value Description

EB_NONE Default behavior

EB_TAB A <TAB> key will exit an EntryField object

New Attributes

1–12 Release Summary

Valid Value Description

EB_ENTER A <CR> will exit an EntryField object

EB_ALL Both the <TAB> and <CR> keys will cause an exit of the
EntryField object.

FrameExec Class

Attributes NextTargetField

NextTargetField Attribute

Data Type ActiveField

4GL Access R

Description The NextTargetField attribute is used to substitute for the TargetField attribute of
FrameExec in cases when the user action is going to set the input focus to a field
that is not yet present on the frame. The NextTargetField attribute is set only if
the TargetField attribute is set to NULL.

The TargetField attribute can be set to NULL when:

1. The user clicks on an append row of a tablefield.

2. The user action will scroll the tablefield.

It is not mapped since the Exit event has not completed and the 4GL code might
still do a "Resume" which would prevent it from completing. NextTargetField is
set in this case. Not all of its attributes are reliable, and the 4GL code should not
try to set any attributes of the field. However, attributes which never vary for the
tablefield column will be reliable.

The NextTargetField attribute can be used to confirm that the target is in a
tablefield and to determine which column of the tablefield is the target.

Object Class

Attributes InstanceIdentifier
InstanceReferences

New Attributes

OpenROAD 4.1/0109 Enhancements 1–13

InstanceIdentifier Attribute

Data Type integer

4GL Access R

Description The InstanceIdentifier attribute contains a value that uniquely identifies this
instance of an allocated object. The value is guaranteed to be unique among the
set of instantiated objects for an OpenROAD session. It is valid only during the
life of this object. When this object is freed, the value is available for reuse.

InstanceReferences Attribute

Data Type integer

4GL Access R

Description The InstanceReferences attribute contains the current number of references to
this instantiated object. A value of zero represents a permanent object that cannot
be freed.

SessionObject Class

Attributes ProcessWait
ProcessWindow

ProcessWait Attribute

Data Type integer

4GL Access RW

Description The ProcessWait attribute is used to specify whether commands executed by the
"call system" statement block the execution of the currently running OpenROAD
application until they complete. The default value is TRUE, indicating that the
OpenROAD application will wait while executing statements via the "call
system" statement. A value of FALSE will allow an OpenROAD application to
continue executing 4GL statements after issuing a system command via the "call
system" statement.

New Methods

1–14 Release Summary

ProcessWindow Attribute

Data Type integer

4GL Access RW

Description The ProcessWindow attribute is used to specify whether commands executed by
the "call system" statement run in a process that has a window. The default value
is TRUE, indicating that executing statements via the "call system" statement will
create windows. A value of FALSE indicates that system commands run via the
"call system" statement will not have process windows.

New Methods
The following classes have new methods:

■ LongByteObject Class

■ StringObject Class

LongByteObject Class

Methods ConvertFromString

ConvertFromString Method

Description The ConvertFromString method loads the object from a StringObject that is
assumed to hold a representation of binary data, which has been converted to
text.
integer = LongByteObject.ConvertFromString(
 string = StringObject, format = integer);

The format parameter is required and specifies the data format of the text in the
string parameter. Valid settings are:

Valid Settings Description

EF_HEX Each pair of hexadecimal characters in the string is
expected to represent a single byte of binary data. For
example, the string "00017F" is loaded as three bytes
containing the values 0, 1, and 127.

New Methods

OpenROAD 4.1/0109 Enhancements 1–15

Valid Settings Description

EF_BASE64 The string is expected to represent binary data that has
been converted to text using the Base64 Content-Transfer-
Encoding1 algorithm. As an example, the string "AAF/" is
loaded as three bytes containing the values 0, 1, and 127.

This method returns ER_OK if successful. If invalid characters are found outside
the alphabet of the specified format or if any other errors occur, the method will
return ER_FAIL.

StringObject Class

Methods ConvertFromBinary

ConvertFromBinary Method

Description The ConvertFromBinary method loads the object from the binary contents of a
LongByteObject. This provides a way of converting binary data into a text string.
integer = StringObject.ConvertFromBinary(
 binary = LongByteObject, format = integer);

The format parameter is required and specifies how the binary contents of the
LongByteObject are converted into text. Valid settings are:

Valid Settings Description

EF_HEX Each byte is converted into a two-character hexadecimal
representation of that byte. For example, the three bytes
containing the values 0, 1, and 127 are copied into a string
with a value of "00017F". Using this format will increase the
size of the data by 100 percent.

EF_BASE64 Base64 Content-Transfer-Encoding algorithm is used to
convert binary data into a string. As an example, the three
bytes containing the values 0, 1, 127 are copied into a string
with a value of "AAF/". Using this format will increase the
size of data by about 33 percent.

This method returns ER_OK if successful. If invalid characters are found outside
the alphabet of the specified format or if any other errors occur, the method will
return ER_FAIL.

Application Server

1–16 Release Summary

Application Server
The following application server enhancements have been made in this
maintenance release:

■ Authorized Applications Only

■ Forced Shutdown

■ DPO

■ SPO Launch Permissions

Authorized Applications Only

If the new RunAuthorizedAppsOnly option is selected in the VASA SPO
configuration options, the SPO will refuse to Initiate any application images
which have not been registered. An "Unauthorized application" error 0x8004E300
is returned on the Initiate call.

Forced Shutdown

When the OpenROAD Application Server service (orsposvc) is stopped, the SPO
will now shut down regardless of how many other clients are connected.

Calls already in process are given a grace period to complete. Further calls from
existing clients are refused (with a "Dispatcher disabled due to shutdown" error
0x8004E000). Attempts by new clients to connect are refused by COM (with an
"Access denied" error 0x80070005). The SPO terminates as soon as all its ASO
slaves have finished processing their current calls, or when the grace period
expires, whichever comes first.

The ShutdownGracePeriod can be set in the VASA SPO configuration options,
and it defaults to 15 seconds. If a call does not complete within the grace period,
the ASO processing that call will be disconnected, and the SPO will terminate.
When a disconnected ASO finally completes the call, the byref results are
discarded and the ASO begins a normal shutdown sequence.

DPO

The DPO (OpenROAD.DomainPortal routing server) has been removed from
this release (and will be automatically uninstalled and erased from existing
installations) because it created a potential security risk. It has been replaced by a
more direct method for overriding the COM default authentication level of the
client machine and requesting unauthenticated connections.

Workbench

OpenROAD 4.1/0109 Enhancements 1–17

If a Routing string of "unauthenticated" is specified on an Initiate call, an
explicitly unauthenticated connection is established directly to the target server.
Without this, COM would first attempt to establish an authenticated connection,
and only after failing that would it fall back to an unauthenticated connection.
Under some network configurations, those failed attempts can significantly
impact performance. An explicitly unauthenticated connection also overrides the
default authentication level of the client process.

The Initiate Routing string "OpenROAD.DomainPortal" is still supported for
backward compatibility, but it no longer causes connections to be forwarded
through a DPO server; it simply enables an explicitly unauthenticated
connection, directly connecting to the target server. The new Routing string
"unauthenticated" is equivalent, and is the preferred way to achieve that result.

SPO Launch Permissions

The installer now sets the SPO launch permissions to include only the SYSTEM
account, which is the account under which the OpenROAD Application Server
service (orsposvc) runs. This enables the lifetime of the SPO to be fully controlled
by the orsposvc, by preventing other users from launching an SPO when the
orsposvc is trying to shut down.

Workbench
The following workbench enhancements have been made in this maintenance
release:

■ Application Workbench Frame

■ Connections Profile Edit Frame

■ Script Editor Frame

■ Reporter Query Editor Frame

■ Reporter Component

Application Workbench Frame

Full Row Selection has been added under the Options menu. This allows the
listview selection to span columns if selected.

OpenROAD Runtime

1–18 Release Summary

Edit Connections Profile Frame

The -x flag has been removed. It can be accessed from Other flags if necessary.

Script Editor Frame

A search list OptionField has been added to the toolbar. This OptionField
contains a list of the most recent search strings. To use, enter a string to find in
the OptionField and then click on the Find Next icon.

A Match Case icon has been added to the toolbar. Use this to add case sensitivity
to your searches. Toggle the icon on to do case-sensitive searches and off to do
case-insensitive searches.

Reporter Query Editor Frame

Changed the Columns... menu item under the Edit menu to View Columns.… .

Reporter Component

The prompt before deleting a report now only happens once.

The delete button in the reporter catalog color now matches other buttons in the
frame.

OpenROAD Runtime
The following OpenROAD runtime enhancements have been made in this
maintenance release:

■ ExtObjects

■ Reporter

■ TableFields

ExtObjects

One can now use the byref clause on parameters to pass and receive data in an
ExtObject (ActiveX) method.

Demos

OpenROAD 4.1/0109 Enhancements 1–19

Reporter

New exported 3GL function rep_print_document() exposes the repprint.exe
functionality.

New flags have been added to reprint.exe which allow the developer to specify
the behavior of the confirmation popup. Specifying -cy has the current default
behavior of asking for confirmation before printing. Specifying -cn suppresses
the confirmation popup before printing. This allows unattended batch jobs that
send output to the printer to run.

TableFields

Mousewheel scrolling is now supported on tablefields. To scroll using the
mousewheel, hover the cursor over the tablefield to be scrolled and move the
mousewheel.

Changes to a protofield's property option menu are reflected in the other rows
belonging to the columnfield. Scripts associated with other rows continue to
execute.

Demos
The following demo enhancements have been made in this maintenance release:

■ UNIX

■ Windows

UNIX

Use the same demo applications for 3GL and ESQLC procedures as on Windows.

Windows

Meeting Point and global.asa now use the new routing parameter.

VASA

1–20 Release Summary

VASA
The following VASA enhancements have been made in this maintenance release:

■ SPO Details Pane

■ ASO Details Pane

■ Disable New Connections

■ Auto-Suspend

■ Stateless Application Housekeeping

■ User-Defined Procedure - iiasohousekeep

■ Support for RP_LOCAL

SPO Details Pane

The SPO Details pane has been enhanced to allow maintenance of the new SPO
registry entries RunAuthorizedAppsOnly and ShutdownGracePeriod.

ASO Details Pane

Added maintenance of Routing registry entry which replaces the DPO
(OpenROAD.DomainPortal routing server) authentication override mechanism.
Also, visual enhancements have been made to the pane.

Disable New Connections

Added the ability to manually disable an AKA Detail registration, preventing
new connections via the Name Server, but still allowing the ASO and any
existing users to be monitored. A remote node can also be disabled manually.

Auto-Suspend

There is a new auto-suspend configuration option to automatically suspend an
AKA Detail if housekeeping of that node fails. This provides automated failover
causing new connections to be directed to other AKA Details with the same
name. Remote nodes will also be suspended automatically if there are zero AKA
Details available at the remote node (and the remote node is being monitored by
the current VASA instance).

ASOLIB

OpenROAD 4.1/0109 Enhancements 1–21

Stateless Application Housekeeping

Housekeeping of stateless applications is also now possible. This can be
configured in VASA and a housekeeping log is displayed.

User-Defined Procedure - iiasohousekeep

A new procedure, iiasohousekeep, can be overridden by a user procedure with
the same name. This enables user defined housekeeping functionality to be
implemented.

Support for RP_LOCAL

Nodes can be configured with server type = RP_LOCAL. This means that the
NameServer can be used in a test environment where the server application is
included in the client application.

ASOLIB
The following ASOLIB enhancements have been made in this maintenance
release:

■ COM Errors

■ NameServer

■ XML - in

■ XML - out

■ Pre-process, post-process User-Written Routines for XML-in, XML-out

■ Load Balancing

COM Errors

COM error codes are now logged in HEX to make them easier to interpret, and
all REMOTESERVER values are also logged.

NameServer

The 4GL client NameServer component ASONameServer now accepts optional
parameters specifying the Location and Routing of the NameServer. This means
that the machine's default DCOM settings can be overridden when connecting to
the NameServer from 4GL.

UNIX

1–22 Release Summary

XML-in

Global Service Call Procedures (GSCPs) can now handle XML-in as well as XML-
out. This means that some or all of the "in" parameters to a GSCP can be
contained within an XML document.

XML-out

Global Service Call Procedures (GSCPs) XML-out generation will now traverse
inherited userclasses.

Pre-process, post-process User-Written Routines for XML-in, XML-out

It is now possible to call a user-written routine to pre-process the XML-in when it
is first received from the client. Similarly, a user-written routine can be used to
post-process the XML-out before it is returned to the client. This enables user
modification of the XML. For example, an XSL Transformation could be applied
using a third-party XSLT control.

Load Balancing

Server farm connection load balancing has been improved to dynamically
maintain connection counts for remote installations. Previously, remote
installations were allocated connections on a round robin basis.

UNIX
Added VASA to the installation package.

OpenROAD 4.1 New Features 2–1

Chapter

2 OpenROAD 4.1 New Features

OpenROAD 4.1 represents a logical evolution of the OpenROAD 4.0 product yet
it provides a significant number of enhancements that are designed to allow the
creation of better looking applications, allow the creation of N-Tier applications
and support the development and deployment of OpenROAD applications on
UNIX platforms. OpenROAD 4.1 is built on the OpenROAD 4.0 functionality.
Migration from OpenROAD 4.0 to OpenROAD 4.1 is a simple process. By
default, an existing application running under OpenROAD 4.1 will look very
similar to one running under OpenROAD 4.0. The enhancements to the look and
feel of OpenROAD can be exploited as they are desired.

Property Option Menu Enhancements
Create Property Option Menus at application runtime and associate them with a
CompositeField.

TableField Enhancements
Add the listview look and feel to tablefields. The following features were added:

■ Button Headers

■ Resizable column

■ Display a subset of columns (Horizontal Scrolling)

Keystroke Events on EntryFields
Allow application developers to monitor keystrokes in entryfields: New events
KeyPress, ChildKeyPress, BufferChanged, and ChildBufferChanged events.
Added new system class KeyPressInfo that contains keystroke information.

Auto-completion for OptionFields

2–2 Release Summary

Auto-completion for OptionFields
Provided a new mode, OF_AUTOFIND, that provides an auto-completion
feature that allows a user to select an item from the list by typing one or more
initial characters of the desired item.

New Field Styles
Introduce a new style OS_STANDARD to provide the standard Microsoft style
for ScalarFields and CompositeFields.

SizeGrip
Introduce a Microsoft-like SizeGrip in the lower right hand corner of resizable
frames.

True Type Fonts
Currently, OpenROAD provides limited support for fonts. The introduction of
True Type (native) fonts provides application developers with greater flexibility
in designing OpenROAD frames. Among other things, True Type fonts allow
developers to scale field sizes.

Button Styling
The new OS_STANDARD style now allows buttons to conform to the Microsoft
standard.

Progress Bars
OpenROAD works with Microsoft Progress Bar ActiveX control. The ActiveX
control that this feature is based on is only available under Windows.

Group Boxes

OpenROAD 4.1 New Features 2–3

Group Boxes
A Group Box contains a number of logically related objects. It consists of an
outline with a beveled border and a label, which describes the contents of the
box. Subforms and Flexibleforms can now have a groupbox label.

Wizard Frames
Enhance tabfolders so that a wizard frame can be created.

Icon Images
OpenROAD 4.0 support for icons is extremely limited. An icon file can contain
multiple images. The OpenROAD 4.0 implementation only uses the first icon
image in the icon file. It treats icons with transparent colors like a monochrome
bitmap.

An icon may have a transparent area that is represented by the "transparent
color." When an icon is placed on a form, OpenROAD 4.1 will honor the
transparent color and allow colors below the transparent area of the icon to
"show through."

24-bit Color Bitmaps
OpenROAD 4.0 supports color images up to 8-bit color resolution. OpenROAD
4.0 can read 24 bit color images, but internally it converts these to 8 bit images.
When images are converted, a significant amount of color information is
permanently lost resulting in a very grainy picture. The internals of the
BitmapObject have been modified to remove this restriction.

System Color Remapping
Bitmaps can be rendered differently in the Microsoft development environment.
They can either be loaded as is, which would typically be done with pictures and
photographs used pictorially, or they can be re-mapped with system colors. Re-
mapping is typically done if the bitmap is going to be used on a ButtonField,
MenuField, ToolBar or anywhere where a rectangular image is boring and quite
often unattractive. Microsoft defines exactly how re-mapping is to occur.

RGB Color support

2–4 Release Summary

Three colors are defined that will be re-mapped:

Color RGB Setting Result

CC_SYS_BTNFACE RGB(192,192,192) mapped to the system
button face Gray

CC_SYS_BTNSHADOW RGB(128,128,128) mapped to the system
Shadow color Dark Gray

CC_SYS_SHADOW RGB(233,233,233) mapped to the system
Highlight color Light Gray

These will then need to be re-mapped whenever the system colors are changed.
This feature will allow the placement of what appears to be non-rectangular
bitmaps on OpenROAD FormField objects.

RGB Color support
OpenROAD supports a user customizable color palette along with a non-
customizable system palette. This places an arbitrary limit on the amount of
colors available for application use. Specifying a palette index currently sets color
attributes. Allowing color attributes to be set with either a palette index or a RGB
value will lift the color limit.

A new system-defined function is provided to return an integer representing an
RGB color value.

RGB Function

Purpose Returns an integer number representing an RGB color value.

Syntax RGB (red, green, blue)

Arguments Data Type Description

red integer 0-255, inclusive, that represents the red component
of the color

green integer 0-255, inclusive, that represents the green
component of the color

blue integer 0-255, inclusive, that represents the blue component
of the color

Returns Returns an integer number representing an RGB color value

Drag and Drop

OpenROAD 4.1 New Features 2–5

Drag and Drop
Support drag and drop (DAD). This is the ability to drag information from one
activefield to another. DAD is not dragging one field to another to invoke some
code; it is moving data contained in one field to another. DAD allows
OpenROAD Application Developers to add this functionality to their
application. With OpenROAD DAD, users will be able to specify the type of data
that is being transferred (including user classes) and thus, users will have great
flexibility in creating objects that can be used for transferring data.

For example, in a DAD enabled OpenROAD application, the user could select an
imagefield representing a database table, and drag and drop it over a tablefield
which gets populated with data from the database table.

OpenROAD DAD will support the following DAD features:

■ Keyboard state during a drag operation

■ Drag operation will be aborted if Esc key is pressed

■ Cursor change when pressing the Control key during a drag operation

OpenROAD DAD will have the following restrictions:

■ Drag and drop will not be allowed among several OpenROAD applications

■ Drag and drop between several forms within the same application, however,
will be allowed

■ No support for dragging objects from OpenROAD to non-OpenROAD
applications

■ Dragging will be supported with the left (primary) mouse key only

Standard Toolbars Bitmaps
OpenROAD 4.1 provides a set of bitmap files that users can utilize for
developing their applications. Application developers can now add new toolbar
bitmaps to the palette and create and maintain their own galleries of toolbar
bitmaps.

Flat Toolbars with Hot tracking

2–6 Release Summary

Flat Toolbars with Hot tracking
Another new Microsoft interface style that has become popular is the "flat"
toolbar. In a flat toolbar, each button takes on a 3D look only when the mouse
cursor tracks over it. This is known as "hot tracking."

A new button style attribute BS_TOOLBAR has been introduced to give this
behavior to an OpenROAD button.

Spin Controls
OpenROAD 4.0 provided a field template called spin_control that creates an
entryfield with an associated pair of buttons that allow the user to increment or
decrement the field. This did not look like the native Microsoft UpDown control.
OpenROAD 4.1 now has a spin control template that looks more like the
Microsoft control.

Date Picker
OpenROAD has been certified to use the DateTimePicker ActiveX control
provided by Microsoft. The ActiveX control that this feature is based on is only
available under Windows.

CompositeField Enhancements
The OpenROAD 4.0 application development environment allows a developer to
group various types of visual fields into a single field known as a
CompositeField. The purpose of a CompositeField is twofold: (1) It allows the
various fields within a CompositeField to be treated as named attributes of a
parent class, thus inheriting many of the benefits of object-oriented programming
and (2) it allows the creation of portable visual grouping of form fields that
maintains inter-field geometry regardless of deployment platform.

When a CompositeField is used to represent the attributes of an OpenROAD
userclass, a restriction comes into play: the CompositeField can contain only
fields contained in the userclass. One cannot place "foreign" entryfields or
buttonfields in a CompositeField based on a userclass and take advantage of
both Object-oriented and portability benefits of CompositeFields. This restriction
has been relaxed.

ActiveX Error Handling Enhancements

OpenROAD 4.1 New Features 2–7

ActiveX Error Handling Enhancements
The OpenROAD 4.0 application development environment allows a developer to
invoke methods and access attributes of an ExternalClass object containing an
ActiveX component. In many instances the specification of an ExternalClass
method invocation or attribute access does not contain a status indication, in that
the operation either fails or succeeds, with the operation target either containing
junk or a valid external class component. There was no way to differentiate that
an ExternalClass object contained a valid object using the OpenROAD 4GL.
Subsequent operations on invalid or junk objects lead to more problems, such as
strange execution patterns, trashed data, application crashes, and lost data.

OpenROAD 4.1 now provide a way to indicate to a 4GL program that the last
ExternalClass operation has failed and provides detailed information as to why
the failure occurred.

Userclass Object Allocation Limit Increase
Add the ability to create virtually an unlimited number of userclass cbjects. The
new limit is now 2 billion. The ability to create a large number of Userclass
objects allows developers to design applications that leverage the strengths of
Object-Oriented programming unencumbered by unreasonable limits. The old
limit was 32,760.

Report Writer Conversion to OpenROAD
OpenROAD includes Reporter, a repository-based, report writer utility that
allows reports to be viewed or printed. This report development tool feature
highly sophisticated graphic capabilities. This feature provides a new utility to
convert Ingres Report-Writer reports to Reporter reports.

StackField Separator (Screen divider)
Provide OpenROAD users with the ability to create forms that contain two or
more adjacent subforms that can be re-sized using a divider between these
subforms.

For example, in Windows NT Explorer, there are two areas: Folders, and
Contents. The two areas can be re-sized by dragging the divider between those
two areas.

Minimizing Informational Messages in Trace Windows

2–8 Release Summary

Minimizing Informational Messages in Trace Windows
A new parameter was added to the application startup command string. This
parameter notifies the application to disregard the informative messages.

Destroy a Single Component Flag in DestroyApp
Provide users of the DestroyApp utility with the ability to identify individual
components of an application to be destroyed. Previous versions of the utility
only allowed destruction of the entire application.

Reporter API Documentation
Reporter is a tool for designing reports in a graphical-layout manner similar to
the design of frames in OpenROAD applications. Reporter generates a 4GL
procedure to take care of the data retrieval and organization in report form, and
a 4GL API to a set of 3GL routines for the actual generation of an intermediate
output file. A separate process is responsible for the final interpretation of the
intermediate file and sending output to a printer.

The recent changes to Reporter allow run-time support for converting dynamic
Report procedures into static procedures. Also, the introduction of the RWConv
utility offers users their first exposure to the 4GL API. These changes allow users
to write code that utilizes the API in a supported fashion.

Make Defining Break Columns Optional in Reporter
OpenROAD 4.0 Reporter provides three options to make page configuration of a
report and they are form report presentation, tabular report presentation and
page layout template report presentation. The tabular report presentation allows
columnar-style reports, which are suitable, for example, for sales and inventory
reports. For the tabular report presentation, Reporter requires a break column be
defined so that when its value changed, a page break will be made and page
footer if there is one will be printed. A lot of customers, especially new Reporter
users, have complained about this requirement. They want to make this
requirement optional so that they can print a table content and put as many rows
as possible in a page.

New OpenROAD Workbench Startup Options

OpenROAD 4.1 New Features 2–9

OpenROAD 4.1 has removed the restriction that prevents user from continuing if
no break column is defined and has added logic to handle page breaks based on
a page length parameter when no break column is defined for a tabular
presentation report.

New OpenROAD Workbench Startup Options
OpenROAD Workbench has now been enhanced to allow new startup options.
When the OpenROAD Workbench is started, it will now accept a command line
flag to skip the splash screen.

For example:
w4gldev runimage workbnch.img -/appflags nosplash

A new command line flag has been provided that allows a user to specify a
connection profile on the command line.

This is as follows:
w4gldev runimage workbnch.img -/appflags profile=profilename nosplash

When specified on the command line, the profile name may not contain
embedded white space.

OpenROAD 4.1 Demo Overview 3–1

Chapter

3 OpenROAD 4.1 Demo Overview

OpenROAD 4.1 is best understood by the examination of the demos. The demos
have been made an integral part of the OpenROAD 4.1 product. They have been
designed to be simple and easily understood. They will be the starting point that
many will use to understand the advanced capabilities of OpenROAD 4.1

A lot of work has been put into the creation of these demos. The source code for
all demos has been provided and you are free to examine or reuse any of it in
your applications.

Active Server Page Demo
This demo illustrates how to access OpenROAD from an Active Server Page
(ASP). Access to OpenROAD from the ASP is accomplished via the COM-based
OpenROAD Application Server.

This is a very simple demo that illustrates how the OpenROAD Application
Server can be used to expose business logic to a client. This demo consists of a
single OpenROAD Application called SISBL. This application exposes a number
of 4GL Service Call procedures.

This application supports two basic demos:

■ SISBL ASP access to the demo database

■ TMQuery access to the demo database

There is a description of the demos. The source code is provided for all
components. The ASP and 4GL source code has been also provided in a
hyperlinked format to allow the flow of the requests to be more easily
understood.

This demo also contains an application that can be used to load the sample
database data. This data load utility has been tested against Ingres, Enterprise
Access, and EDBC data sources successfully.

SISUI Demo

3–2 Release Summary

SISUI Demo
This demo illustrates how to access OpenROAD from a thin client OpenROAD
Application. This client uses COM/DCOM to communicate with an OpenROAD
Application Server to run queries against the database.

This demo accesses the demo database using an OpenROAD Application Server.
It uses the same OpenROAD Application Server as the SISBL and TMQuery
demos.

Meeting Point Tutorial Demo
This demo employs an integrated help system to provide commentary on four
production standard applications:

1. MP 1: Two Tier Fat Client: A traditional fat client application, where
graphical presentation, business logic, and database access are combined;

2. MP 2: Three Tier Fat Client: Conversion to stateless 4GL procedures within
the Application Server. These procedures perform the database access, and
are called from a separate client application;

3. MP 3: Fat Server: Introduces some design techniques to help make the server
application as fat and reusable as possible;

4. MP 4: Web Client: Reuses the fat server application, this time driving it with
a Web Server and ASP.

The ASP Thin Client application also demonstrates the use of XML with the
OpenROAD Application Server. The responses from the OpenROAD
Application Server are returned as an XML document. This XML document is
sent to the browser. The browser applies the style sheet to generate the user
interface.

Object Factory Demo
This demo illustrates an object oriented design technique that can be used within
new Application Server systems. The technique can also be used to convert
existing fat client systems into a partitioned application. It keeps disruption of
client code to a minimum and produces a fat reusable server application.

Application Server Support for OpenROAD 4.1 4–1

Chapter

4
Application Server Support for
OpenROAD 4.1

The OpenROAD Application Server is a collection of objects and services that
supports n-tiered applications written in the OpenROAD 4GL. The Application
Server facilities allow OpenROAD 4GL business logic to be shared by a very
wide variety of client programming environments and languages, including web
server scripting languages.

This chapter outlines the following Application Server features found in
OpenROAD 4.1:

■ Utilizing COM

■ 4GL Remote Procedure Calls

■ Automation Types

■ Fixed Signature, Dynamic Data

■ Structured Data

■ The Remote Server Object

■ The Parameter Data Object

■ The 4GL REMOTESERVER System Class

■ Private Server, Shared Server

■ Application Server Object Library (ASOLib)

Utilizing COM
The OpenROAD Application Server consists of a set of COM (Microsoft's
"Component Object Model") objects exposing COM Automation-compatible
interfaces. This helps maximize the number of client environments that can take
advantage of the OpenROAD Application Server facilities, and it leverages the
extensive support COM provides for local and remote server activation,
marshaling of parameters, and configurable security controls.

4GL Remote Procedure Calls

4–2 Release Summary

4GL Remote Procedure Calls
The basic conceptual model is that of a remote procedure call, where the called
procedure is an OpenROAD 4GL procedure contained in some specified
OpenROAD application image. OpenROAD 4GL procedures can now be called
remotely, and called by clients that are entirely outside the context of
OpenROAD. Named parameters can be passed by value or by reference.
Parameters passed by reference may be modified by the 4GL procedure, and
those changes will be mapped back to the caller's copy of the parameters.

Automation Types
To maximize the number of different client languages that can utilize the
OpenROAD Application Server, all server facilities are accessed via COM
Automation-compatible interfaces. This means that parameters passed to the
remote 4GL procedures must be expressed within the set of datatypes supported
by COM Automation.

This common denominator provides a rich collection of types, but does not
include all the object types (such as System Classes) that an OpenROAD
procedure might accept as parameters in a purely OpenROAD context. When an
OpenROAD client makes a remote call to an OpenROAD server procedure, the
parameter types that can be passed are limited to the set of types that can be
converted to and from COM Automation types.

The primary goal of the OpenROAD Application Server is to allow many
different client languages to share the same OpenROAD 4GL business logic. It
does not (at this time) provide transparent partitioning of OpenROAD
applications. Remote 4GL procedure calls are limited to the common
denominator of Automation parameter types, and therefore cannot duplicate all
the functionality of purely local OpenROAD 4GL procedure calls.

Fixed Signature, Dynamic Data
Instead of constructing and deploying separate proxy/stub code for customized
COM signatures for each OpenROAD 4GL procedure, the Application Server
uses a generalized method signature, and the data passed through that signature
is dynamically mapped to the actual signature of the called 4GL procedure. This
is somewhat analogous to the way parameters are passed through the IDispatch
Automation interface.

Structured Data

Application Server Support for OpenROAD 4.1 4–3

This generalized signature provides an easy-to-deploy baseline facility, which is
the only interface directly supported by the Application Server. There is nothing
to prevent developers from building their own customized COM objects and
method signatures to wrap the underlying interface, but the Application Server
facilities do not yet provide any direct assistance for that.

OpenROAD 4GL procedures take named parameters. Parameters are passed
through the COM interface via pairs of arrays: an array of parameter names and
a corresponding array of parameter values. Constructing these paired arrays can
be tedious (or impossible) in languages that have limited support for Automation
array types. Therefore, additional objects (such as the Parameter DataObject, and
the OpenROAD 4GL REMOTESERVER system class) have been provided to
encapsulate the actual array structures and make it easier to construct and access
the parameter data.

Structured Data
OpenROAD supports structured data in the form of userclasses and userclass
arrays. A userclass is analogous to a row of data with a well-defined set of
column types, and a userclass array is analogous to multiple rows of data with
the same column types. OpenROAD userclasses and userclass arrays can be
nested to any number of levels, allowing the construction of very complex
hierarchical data structures.

Fortunately, COM Automation supports two-dimensional arrays, and allows
those arrays to be nested to any number of levels. Therefore, OpenROAD
structured data can be expressed as nested two-dimensional arrays, where each
row represents one userclass instance or one row of a userclass array. The
parameter name array can be similarly nested, to create a descriptor that defines
not only the names of the parameters at the top level, but also the mappings to
names of userclass attributes at all the nested levels. This allows very complex
structured data to be passed as parameters to remote 4GL procedure calls.

Creating and manipulating the nested two-dimensional arrays that represent
complex structured parameters is not easy, but it is not necessary to manipulate
those structures directly. The Parameter Data Object (and OpenROAD 4GL
REMOTESERVER system class) encapsulate those array structures and provide a
more intuitive syntax for creating and accessing complex structured parameters.

The Remote Server Object

4–4 Release Summary

The Remote Server Object
The OpenROAD Remote Server COM object provides the methods that allow a
client to connect to a desired OpenROAD application image and to call 4GL
procedures in that application image. It is registered under the COM PROGID
"OpenROAD.RemoteServer". Methods provided by this COM object include:

■ Initiate - to connect to an appropriate server process that hosts the specified
OpenROAD application image.

■ CallProc - to call a specified 4GL procedure within that Initiated application,
passing named parameters by value or by reference, via the Parameter Data
Object.

The Parameter Data Object
The OpenROAD Parameter Data COM object provides an easy way to construct
complex nested parameter structures. It is also important for client languages
that do not support direct manipulation of Automation types. It is registered
under the COM PROGID "OpenROAD.ParameterData". Methods provided by
this COM object include:

■ DeclareAttribute - to declare a named parameter.

■ SetAttribute - to set the value of a named parameter.

■ GetAttribute - to retrieve the value of a named parameter that was passed
by reference and modified by the called 4GL procedure.

The 4GL REMOTESERVER System Class
Within OpenROAD 4GL code, a REMOTESERVER system class wraps the
OpenROAD Remote Server COM object. The Parameter Data Object is not used
in this context because the REMOTESERVER system class provides a more direct
way to specify parameters for the remote 4GL procedures. Methods provided by
the OpenROAD REMOTESERVER system class include:

■ Initiate - to connect to an appropriate server process that hosts the specified
OpenROAD application image.

■ Call4GL - to call a specified 4GL procedure within that Initiated application,
passing named parameters by value or by reference. Parameters are passed
using normal 4GL call syntax.

Private Server, Shared Server

Application Server Support for OpenROAD 4.1 4–5

Private Server, Shared Server
The OpenROAD application image that executes the remote 4GL procedure calls
can run in either a private server or a shared server.

A private server is a separate server process dedicated to serving one and only
one client. This configuration is easy to understand and it avoids the
complications that can arise when interleaving concurrent requests from multiple
clients in a shared server. But the performance cost is high, because a new server
process must be launched each time a client calls the Remote Server Initiate
method. Further, it does not scale well to large numbers of clients because each
client must have a separate, dedicated server process on the server machine.

A shared server allows any number of clients to connect to the same server
process. A shared server allows the Remote Server Initiate request to be very fast,
since most of the time a shared server process for the desired application is
already active and does not need to be launched or initialized. A shared server
also scales better for large numbers of clients, since many clients can share the
resources of one server process.

Using a shared server requires special discipline on the part of the application
developer because remote 4GL procedure calls from different clients can be
interleaved in any order. Remote calls are serialized, so that the 4GL need not
manage concurrent threads within the scope of one remote call, but the
application must be designed to allow switching client context between one call
and the next. This means that care must be taken to associate the appropriate
application state with the appropriate client.

One simple technique for managing client state in a shared-server environment is
to have each client hold a structure containing its own state variables, and to pass
that structure as an extra by-reference parameter on all remote 4GL calls. The
server application can then use that structure to restore the current client's
application state at the beginning of the call and then save any changes in that
client state before returning.

The OpenROAD Application Server can be configured to have a single shared
server process for each application, or multiple server processes for a single
application. The multiple-server configuration provides automatic load
balancing across the multiple server processes, and allows larger numbers of
clients to be served efficiently (especially on multiprocessor machines). However,
the multiple-server configuration requires even more discipline in the
management of application state from one call to the next, because each time a
client makes a remote call it may be routed to a different server process.

An optional parameter on the Remote Server Initiate method specifies whether
the client wants to use a private or a shared server. The default is to use a shared
server.

Visual ASA

4–6 Release Summary

Visual ASA
A new tool to support the Application Server has been added: Visual Application
Server Administrator. This is a Graphical User Interface tool designed to allow
administrators to manage and monitor systems running under the OpenROAD
Application Server. It works in conjunction with ASOLib (see below).

There are three distinct functions provided by Visual ASA:

■ Name Server Maintenance;

■ Application Monitoring and Session Analysis;

■ Housekeeping Console.

Visual ASA provides an intuitive Explorer style interface for Name Server
management. There is one Name Server per AppServer installation. Multiple
applications can be registered with one or more Name Servers to provide
connection load balancing across processes within a given machine, and across
processes on different installations.

Each installation's Server Pooler (SPO) and Application Object (ASO)
configuration parameters are maintained using Visual ASA. Details of each
application registered with a Name Server can also be maintained and
interrogated, and each running application can be monitored.

Application monitoring uses the same interface to drill down into a particular
application instance. The application instance can be started and stopped, and
individual user sessions can be monitored and traced. Each application's callable
interface can also be explored dynamically using the Visual ASA MetaData
interface.

Visual ASA also acts as a production system Housekeeping Console, invoking
garbage collection and expired session timeout within each application, freeing
up memory used by stale objects where appropriate.

A limited functionality browser-based version of Visual ASA is also provided.

Application Server Object Library (ASOLib)

Application Server Support for OpenROAD 4.1 4–7

Application Server Object Library (ASOLib)
ASOLib is a new 4GL library built into the OpenROAD core. It contains
components that can assist with design, development, and deployment of
applications for the Application Server.

These components can be used to create persistent Application Server session
context. This enables pseudo-conversational dialogue between client and server
applications and allows the creation of persistent userclass objects associated
with a client session.

This approach can help to achieve fat-server/thin-client systems, where the
majority of the business logic, however complex, is contained within the server
application.

Reporter Enhancements 5–1

Chapter

5 Reporter Enhancements

Reporter is an OpenROAD application that allows the design of reports through
a graphical interface. The reports are stored in the Reporter catalogues as
collections of Reporter-defined userclasses and data extracted from OpenROAD
system classes representing the fields on the report.

When a report is run within Reporter the graphical definition is converted to a
dynamic 4GL procedure which runs an SQL query and calls API functions to
prepare an output file which can then be printed with the repprint.exe utility.
Since Reporter reports are not applications or components of applications there is
no direct way to make an “image” of a Reporter report, or an application
containing a report, as can be done with OpenROAD applications developed
with Workbench. Prior to the introduction of enhanced runtime support, reports
had to be run within Reporter and then depended upon the Reporter system
catalogues to provide the report definition. This imposed limitations on
portability, requiring that when Reports are moved between sites they must be
exported from the design database and imported into the runtime database.
Customization to the new site may also have been necessary. The bulk loading of
reports was only possible by reloading the Reporter system catalogues. Other
portability issues are discussed below.

Enhanced Runtime Support
Enhanced runtime support is provided in the following ways:

1. Reporter will run in a runtime environment (runimage) allowing viewing
of graphical report definitions and running of any reports in the reporter
catalogues.

■ This requires access to a database with installed reports

■ Some bugs in this area have been fixed

2. Improved error reporting. When a report is run, any errors that occur are
written to the trace window. Some, optionally, can be displayed in popup
windows. When run without popups (default) the report is non-interactive,
thus allowing it to be run in “batch” mode.

Enhanced Runtime Support

5–2 Release Summary

In the Setup/Cleanup frame you can add error checking for the SQLcode
that you provide. Curprocedure.dbsession.errornumber can be used to detect
errors and the Reporter-defined variable “errtxt” can be used to provide the
error description:

inquire_sql(errtxt = errortext);

Reports now return:
-1: error

 0: no rows

>0: rowcount or OK

3. More flexible support for runtime tables. Previous versions of Reporter
required that tables to be included in a query must exist at design time. It
was possible that, at runtime, the actual tables used may be of different
structure as long as the names remained the same and the columns being
retrieved were compatible with the design specification.

Reporter now supports the use of global temporary tables and variable table
names, which may be passed as parameters to the report. This is achieved
through the use of example tables. An example table must exist in the design
environment while the report is being specified but need not be kept once
report definition is complete. It is required to contain only runtime
compatible column definitions that are required by the report. A table that
takes part in a query can be one of three example types:

■ Self – original Reporter behavior

■ Temporary – a global temporary table that may already exist in the
session that calls the report (in which case the same database session
must be used by the report), or may be created during the setup phase of
the report.

■ Parameter – the tablename is a report variable that must be initialized at
runtime. The table name passed in may be that of a temporary table. It
may have a default value.

4. Reporter reports may be converted to static 4GL procedures, which can be
run from any OpenROAD application independent of Reporter or its
catalogues

If the original report uses image trim the procedure will require additional
support:

■ If image trim is stored in the design database, at runtime an “Image
Server” frame is necessary to provide access to the images unless a copy
of the Reporter design database image catalogues is accessible.

■ If image trim is stored on disk at design time, a variable can be set to
point to a directory containing copies of the images on the deployment
machine

Changes to Reporter

Reporter Enhancements 5–3

Changes to Reporter
Changes were made to the following features of Reporter:

■ Main menu

■ Query editor

■ Variable list frame

■ Variable properties frame

■ Print dialog

■ Reporter procedure tool

Main Menu

The following two items were added to the main menu:

Menu Item Description

File/Compile Like File/Print, this button will generate the dynamic
4GL procedure for a report without running it. To
save or run this procedure, see below.

Tools/Procedure List This button starts the new Reporter Procedure Tool.

Query Editor

Example is a new option added to the Edit menu of the Query Editor. This option
is active when a table has been selected in the graphical table display. An
example type may be one of three choices

■ Self: (Default) The table is an example of a runtime table of the same name.
This may include a schema.

■ Temporary: the table is an example of a global temporary table. Reporter will
automatically refer to the table as session.<tablename>. These tables may be
created at runtime by the caller in the same session as the report will be run
or may be created as part of Report/Setup using the OpenROAD syntax for
declare global temporary table.

To drop a temporary table explicitly use drop 'session.<tablename>'.

■ Parameter: When a table is specified as a parameter you will be prompted to
create a variable via the Variable List frame. Variables that are associated with
tables are always of type varchar and are report parameters.

Changes to Reporter

5–4 Release Summary

Notes:
■ A temporary table may be a parameter. In this case define the example type

as Parameter and pass the table name as session.<tablename>.

■ Parameter tables may not have schema attached within the Query Editor. If
required, pass the schema as part of the tablename.

■ In the graphical display area of the query editor, tables that are examples of
Temporary tables, are prefixed with (T), and parameter examples are (P).

■ Quotes ('') are required around the table name for the drop statement.

■ When the example type is parameter this option is available to view or edit
the associated parameter variable.

Variable List Frame

The “Create” Button is labeled “Create Field” or “Create Param” depending
upon the context. It may not be always be visible.

The “Cancel” button is now labeled “Close” to reflect the fact that actions
initiated in this frame cannot be undone directly; variables are created and edited
by calling the Variable Properties frame (Buttons N and Magnifying Glass).
Variables are deleted (trash can) permanently after confirmation if they are not in
use.

When the variable list frame is called as a result of the user choosing to create a
variable field or table parameter, any changes made to variables are kept
whether or not the use selects “Create...” or “Close”. Selecting “Create...”
associates the selected variable with a field or table parameter; selecting “Close”
simply aborts the association but does not affect any changes made to variables.

Variable Properties Frame

Is Table Name is a new indicator in the Expression section of the Variable
Properties frame. You set this indicator when the variable is a table name
parameter. This field is view only. The Query Editor controls the use of a
variable as a table name parameter.

When a variable is a parameter, the entryfield Prompt allows the variable name
to be replaced by an explanatory phrase in the Print Dialog Frame.

When a variable is a table name parameter, its datatype is always Varchar and
IsParameter is always TRUE.

Changes to Reporter

Reporter Enhancements 5–5

Print Dialog

The dynamically created dialog frame associated with a report has an additional
toggle, Popup Errors. The default is FALSE. This toggle controls whether errors,
mainly SQL, are displayed in a popup window. All errors are logged in the trace
window in either case.

Report parameters now have an optional prompt or explanation string. Instead
of simply listing parameters by name it is possible to display a brief explanation
of what information is required.

Reporter Procedure Tool

A dynamic procedure for a report is regenerated whenever a report is Printed or
Compiled from the main Reporter window. These dynamic procedures can now
be reexecuted (avoiding the retranslation which occurs with Print) during the
current session or saved to export files. Exported report procedures may be
imported to any OpenROAD 4.1 application (which must include repcomp.img
and repopen.img). Some modifications to the dynamic procedures have made to
remove assumptions that they are being run within the Reporter environment.

Each report procedure has an associated print dialogue frame, which is normally
seen when a report is run within Reporter. This frame optionally may be
exported along with the procedure. This frame will provide default parameters
for the procedure and will allow the user to set the target database, database
flags, temporary directory, and the name of the intermediate file. This frame is
not required to run the report and the developer may call the procedure via
callproc, just like any other 4GL procedure. The call interface to a report is defined
later in this chapter.

Reports Using Image Trim

A major part of these changes is related to reports that use Image Trim as part of
their output. Note that Image Trim is a static part of the report definition used to
“beautify” the report and is not user bitmap data retrieved through Image Fields
from the user's data tables. 4GL procedures cannot contain initialized image trim
objects, so the image trim used by a report procedure must be stored elsewhere.

During report definition these images are stored in the database or on disk. This
makes porting of dynamic procedures difficult since the location of the required
images is encoded within the report. If the images were originally stored in the
database, the Reporter catalogues would need to exist and the images would
need to be stored with the same unique keys and names. The only way this could
safely be accomplished is to load the Reporter catalogues from the original
design database.

Changes to Reporter

5–6 Release Summary

For images stored on disk the same path to the image files would have to exist on
the target machine. This requires bitmap image files to be deployed in addition
to the report.

These mechanisms are still available but, in addition, more portable mechanisms
are now provided for handling both types of image storage:

Database-resident
images

Database-resident images may be copied into an Image Server Frame, which is
imported into the target application or an included application of the target
application.

Before a report is run, an Image Server variable must be initialized with the
Image Server Frame containing Image Trim required by the report. A global
Image Server Variable (G_ImgSvr) of type u_imgsvr is provided in repopen.img
(which must be included in any application that runs report procedures). An
application developer may declare additional image server variables but a report
procedure always expects to find its images in G_ImgSvr. An Image Server
Frame may contain images for any number of reports and mimics the original
database-resident mechanism for image storage.

When running a static Reporter-generated procedure from an application, an
Image Server is used by default for any image trim originally stored in the design
database.

Notes:
■ When an Image Server is used it is assumed that all database-resident images

are available from the Image Server.

■ A report run from the Reporter File/Print menu item will maintain its
previous behavior; it will NOT use the Image Server since, in this mode, the
report and its images must already exist in the database.

The Procedure Tool provides the means to construct and update an Image Server
Frame.

Disk-resident images Disk-resident images may be installed in a single directory, which is definable at
runtime, or via the environment.

The directory containing report image trim bitmaps may be named by the
environment variable II_REPIMAGE_DIR or the report parameter PM_IMGDIR.

Notes:
■ If an image directory is specified by either method, ALL “disk-resident”

images are assumed to be located in the named directory.

■ If PM_ImgDir is set it will override any setting of II_REPIMAGE_DIR.

Report Procedure Tool

Reporter Enhancements 5–7

■ If both PM_ImgDir nor II_REPIMAGE_DIR are not set the original paths will
be used for disk-based images.

■ To force use of original paths even when an environment variable is set use:
PM_Dir = '<embed>'

■ Reporter File/Print always uses the original paths.

Report Procedure Tool
This section contains a detailed description of the Report Procedure Tool.

The Report Procedure Tool display consists of the menu bar and the following
three regions:

■ Dynamic Procedure List

■ Database/Application Information

■ Report List

Dynamic Procedure List

This view-only list displays the dynamic procedures created during the current
Reporter session. The fields are:

Field Name Description

Session Reports Dynamic procedure names

Short Remark Comment for report

Report Procedure Tool

5–8 Release Summary

Field Name Description

Procedure Saved Saved flag: whether the procedure has been
exported

Database Default database for report

Interface Associated print dialog frame

Frame Saved Saved flag: whether frame has been exported

Database/Application Information

The database/application information area has the following fields:

Field Name Description

Database Entry field allows the naming of any accessible
database to which a connection may be established

Applications Option Field listing OpenROAD applications
within selected database

Report List

There is no way to distinguish Reporter procedures from other procedures. To
facilitate the identification of Reporter-generated procedures contained in
OpenROAD applications, the first part of the short remark is an identifier tag
“<...>” that is used by the Procedure Tool.

Note: If you edit Reporter-generated procedures or frames be sure not to change
the identifier tag if you wish the Procedure Tool to recognize the Reporter-
generated objects. Failure to recognize a component prevents its being displayed
in the Application Reports List, but does not otherwise interfere with
functionality.

The fields in this view-only list are:

Field Name Description

Application Reports A list of reports in the currently selected application

Short Remark With tag removed

Interface Associated print dialog frame

Report Procedure Tool

Reporter Enhancements 5–9

Menu Bar

File

The following items are found on the File menu:

Menu Item Description

Save Session Report Export selected dynamic procedure and specified
associated components (Reports/Options/Include)
to a file. This operation always writes out the export
file(s), even if not changed.

Save Image Server Export a new or updated Image Server Frame to a
file.

Import Dyn Proc Temporarily load a report procedure from an
export file.

Exit Exits Procedure Tool. Will prompt for specified
unsaved components.

View

Note: All menu items marked with an asterisk (*) are definable as user
preferences.

The following items are found on the View menu:

Menu Item Description

Application Info* Show Database/Application and Application
Report areas

Refresh Applications Reload application list for selected database

Refresh Reports Reload report list for selected application

Image Server Display the current Image Server Frame

Batch File Display the current application report import script
for viewing only

Report Procedure Tool

5–10 Release Summary

Reports

Note: All menu items marked with an asterisk (*) are definable as user
preferences.

The following items are found on the Reports menu:

Menu Item Description

Run Runs the currently selected dynamic procedure
using the Procedure Tool’s settings for locating
images.

Convert RW Reports Runs the Report-Writer Conversion Tool RWConv
to convert Report-Writer reports into 4GL
procedures that can be run using the Reporter API.

Install To Application/
Write Install Script

Import selected report components to selected
application or create a batch file for execution at a
later time.

These two items are alternate views of the same
menu button and are controlled by
Reports/Options/Immediate.

The user is prompted to save if the component has
not been exported during the current session.

Batch Import Execute an existing application report import script.

Report Procedure Tool

Reporter Enhancements 5–11

Menu Item Description

Options ->

 Replace Existing*

 Immediate*

 Add Selected/Add All*

 Include ->

 Procedure*

 Dialog Frame*

 Image Server*

 Trace ->*

The default is FALSE.

 If TRUE use '–m –nreplace' when importing
procedures to target application and do not
prompt if clashes detected.

 If FALSE and a clash is detected you will have
the option to overwrite. (Clashes cannot always
be detected.)

The default is FALSE.

 When TRUE exported reports are imported into
target application immediately by 'w4gldev
backupapp in ...'

 When FALSE a report import script is created
and can be run from Reports/Batch Import, or at
any time from the Windows Run command or
from a CMD window.

Select which dynamic procedures to install to target
application.

Applies to both export and import of selected
dynamic procedure

 (Default TRUE) - dynamic procedure

 (Default FALSE) - associated print dialog frame

 (Default FALSE) - current Image Server

Standard OpenROAD trace flags to be used on
import of procedures to applications

Report Procedure Tool

5–12 Release Summary

Images

Note: All menu items marked with an asterisk (*) are definable as user
preferences.

The following items are found on the Images menu:

Menu Item Description

Image Server ->

 Load

 Create New

 Add Images

 Add Image Options ->

 Replace Existing
 Image*

 Add Selected/
 Add All*

Import an image server frame from disk and
initialize the Image Server global variable

Create a new Image Server Frame from a built-in
template

Add images to the dynamic image server frame
from the currently available dynamic procedures

 If an image of the same id already exists in the
image server, replace it. (Not yet implemented.)

 Add images for the currently selected
procedure or for all listed dynamic procedures

Options ->

 Check for Images*

 Use Image Server*

 Use Image Dir*

During install of reports to target applications

(Default TRUE) - Set to FALSE to run dynamic
procedure with database-resident images

(Default TRUE) - Set to FALSE to run dynamic
procedures with original paths for images

Tutorial

Reporter Enhancements 5–13

Options

Note: All menu items marked with an asterisk (*) are definable as user
preferences.

The following items are found on the Options menu:

Menu Item Description

Auto ->

 Refresh Apps*

 Refresh Reports*

 Load ImgSvr*

Reload application list when database is changed

Reload report list when application is changed

Load image server on startup of frame

Files ->

 Replace Existing*

 Use Default Names*

 Batch File*

 Image Directory*

 Image Server*

 Working Directory*

Overwrite existing files without prompting

Derive names from component names
(recommended)

Set/change report import script name

Set/change bitmap image directory

Set/change Image Server Frame name

Set/change directory for report procedures –shown
in title bar

Tutorial
This is a brief tutorial to familiarize you with the new features of the Report
Procedure Tool.

Before You Begin
1. Start Reporter and load a report from the database or import one from a file.

2. To test most of the new features you should use a report with at least two
different image trims and have at least one of each kind: database-resident
and disk-resident.

3. Copy disk-resident images to a directory that is different from the one
defined in the report. All runtime disk-based images should reside in the
same directory.

Tutorial

5–14 Release Summary

4. Compile or Print the report in Reporter. Once run or compiled the report
document may be closed.

5. From the Tools menu, Select the menu item Procedure List.

Using the Procedure Tool

When the Procedure Tool starts, depending upon the settings, it may:

■ load the application list for the current database

■ load the report list for the current application

■ load the default Image Server Frame from disk

If the Procedure Tool is run more than once in the same session the global Image
Server may already be initialized. If auto load is set for the Image Server you will
be given a chance to retain the in-cache version of the Frame and not re-load
from disk.

When the Procedure Tool Frame appears, all Report procedures created in the
current session by successfully compiling or printing reports will be listed as
Session Reports. The reports do not have to be open. The title of the frame will
include the working directory.

File Names

When report components are saved to disk the use of files is controlled by two
options (Options/Files):

■ Replace Existing: If TRUE, overwrite without prompting if file already
exists, otherwise prompt for confirmation.

■ Use Default Names: If TRUE, derive names from component names,
otherwise display a filepopup.

Saving Report Procedures

Any report procedures or dialogue frames which have already been exported
during this session will have "Y" in the Procedure Saved and/or Frame Saved
column. To Export a report or its associated components (frame and image
server) choose File/Save Session Report. The current procedure and/or its
components (see Reports/Options/Include) will be exported to files as described
above.

Tutorial

Reporter Enhancements 5–15

Running Report Procedures

A dynamic procedure may be run directly from here. The default mode for
running the dynamic procedure is “runtime,” using an image server and/or
directory if image-trim support is required. To run a procedure as if from Print in
the main window, set Images/Options/Use Image Server and Images/Options/Use
Image Directory to FALSE.

To re-run a report that you are designing, if the report has not changed since the
last run, or you wish to run the previously printed version before regenerating a
new version from a changed design, it is quicker to use Reports/Run than the
Main Window’s File/Print.

Importing Reports to Target Applications

Note: In order for a target application to use report procedures, it must include
repcomp.img and repopen.img

1. Select the target database, if necessary, by entering a valid
'node_name::database_name' into the Database entry field.

2. If the Application list is not loaded or is out of date, click View/Refresh
Applications. If the Applications option field displays “Load Applications”
then selecting this option will also load the application list.

3. Select the target applications from the Applications option field

4. If the Application Report List is not loaded or is out of date, click
View/Refresh Reports, or if the Application Reports List displays “Load
Reports” click on this row to load reports.

5. Click Reports/Import to Application or Reports/Write Install Script - only one of
these options is available at a given time and is controlled by
Reports/Options/Immediate.

If the selected report or any of its specified components
(Reports/Options/Include) has not been saved during the current session you
will be prompted to:

– Continue: Use a corresponding component on disk.

– Cancel Install: Abort attempt to import the procedure.

– Save Now: Export the required components and continue. If some
requested component cannot be saved you will be allowed to cancel the
install.

Otherwise you will be prompted to confirm the components to be imported.

Tutorial

5–16 Release Summary

If Reports/Options/Immediate is TRUE the exported report components will be
imported into the target application, otherwise an import script will be
written and can be run via Reports/Batch Install.

Note: Reports/Options/Replace Existing

– If TRUE will apply the '-m –nreplace' flag to the import without
prompting for confirmation.

– If FALSE and name conflicts are detected you will be given the option to
Skip, Cancel Install, or Replace. Name conflicts can only be detected if
the current application report list is up to date.

Working With Image Trim

As described above, reports that use image trim in their definitions may require
additional support when imported to target applications. If this support is not
provided the report can still be run:

■ with image-trim - if database or disk resident images are available on the
target machine/database and stored as on the design machine/database.

■ without image-trim – if original images are not available.

Image Directories

Disk-resident image trim must exist in the original directory from which it was
defined or in a single directory anywhere on the local machine if the
environment variable II_REPIMAGE_DIR is set to point to that directory or the
parameter PM_IMGDir is passed to the report or its dialogue frame. For a given
report ALL disk-resident image trim must be stored in the same way.

In the procedure tool a report can be run in either mode determined by the
setting of Images/Options/Use Image Dir. The image directory can be set by
Options/Files/Image Directory and this will override II_REPIMAGE_DIR if that is
also set.

Image Servers

Image trim that was database-resident at design time may exist in the Reporter
images catalogues that MUST be a copy of the design database Reporter images
catalogues, or the image bitmaps may be copied into an Image Server Frame.

Tutorial

Reporter Enhancements 5–17

An Image Server is an OpenROAD frame managed by a Reporter-defined
userclass. The Image Server Frame becomes part of the target application for
report procedures and may be constructed by the Procedure Tool. An
appropriate Imager Server frame must be created or loaded from disk.
Options/Files/Image Server may set a default name and it is expected to reside
in the working directory.

Images/Image Server/Load – load an image server frame from disk and initialize the
Global Image Server object

Images/Image Server/Create – build a new image server frame

Note: In either case if an Image Server is already initialized you will be
prompted to keep or replace.

Images/Image Server/Add Images: - determine which database-resident images are
required by the specified report(s) and add them to the image server frame. Each
image has a unique ID that corresponds to the ID in the design database.
Multiple documents can share the same image.

Note: A Single Image Server Frame can support multiple reports but all must
come from the same design database.

Images/Image Server/Add Image Options:

– Replace Existing: (currently, always FALSE) – attempts to add an image
trim that is already present will be ignored.

 Note: Each report can add an association for an existing image to the
server frame – these associations are held in a viewable tablefield
(View/Image Server)

– Add Selected/Add All: add images from current procedure or all
procedures listed as Session Reports

File/Save Image Server: Export the image server to disk. Only available if server
has been modified

Call Interface to Dialog Frames and Reporter Procedures

5–18 Release Summary

Call Interface to Dialog Frames and Reporter Procedures

Calling via Dialog Frame
callframe <Dialogname> (PM_RunMode = runmode,
 PM_PopErr = smallint not null,
 PM_DirName = dirname,
 PM_Img_Db = imgdb,
 PM_ImgDir = imgdir,
 PM_database = datadb);

Optional Parameters

PM_RunMode: default CS_RM_IS (Image Server) – only meaningful if report
uses image trim

PM_PopErr: (default FALSE) – when true errors are displayed in popup
windows

PM_DirName: directory for temporary output files. The dialog will try to pick a
reasonable directory if none given

PM_Database: (default = curframe.dbsession.database (database name)) -
required only if data resides in a database other than the current dbsession.

PM_Img_Db: required only if:

■ report uses image trim and

■ PM_RunMode = CS_RM_DI (database images) and

■ images are stored in database other than PM_Database (when PM_database
is supplied) or images are not stored in current database

PM_ImgDir: required only if report uses disk-resident images and images are
NOT located in original paths

Call Interface to Dialog Frames and Reporter Procedures

Reporter Enhancements 5–19

Calling A Report Procedure
callproc <procname>(PM_Outputdir = tmpdir,
PM_OutputFile = left(repname,8),
PM_runmode = runmode,
PM_PopErr = poperr,
PM_Imgdir = imgdir);

Required Parameters

PM_Outputdir - directory for temporary output files

PM_OutputFile – temporary file name

Optional Parameters

PM_Runmode: default CS_RM_IS

This is only meaningful if report uses image trim that is not stored locally on
disk valid runtime values:

– CS_RM_IS – use image server

– CS_RM_DI – use database-resident image trim

PM_PopErr: default FALSE

 When TRUE, most runtime errors are displayed as a popup

PM_ImgDir : required only if report uses disk-resident images and images are
not located in original paths

valid runtime values:

'dirname' - a valid directory containing all disk-based image trim

'' - use environment variable II_REPIMAGE_DIR, if set,
otherwise use original paths

'<embed>' – use original paths – ignore any setting of II_REPIMAGE_DIR

Upgrading from OpenROAD 3.5 to 4.1 6–1

Chapter

6
Upgrading from OpenROAD 3.5 to
4.1

Upgrading an OpenROAD application from release 3.5 to 4.1 should be a rather
straightforward process as long as a few rules are adhered to. The purpose of this
chapter is to describe these rules and in what context they apply.

Rule 1
OpenROAD 3.5 will not be able to access any application object that has been
saved and/or created by OpenROAD 4.1. OpenROAD 4.1 cannot run
OpenROAD 3.5 image files.

This rule means that to run an OpenROAD 3.5 application under OpenROAD
4.1, it needs to be converted to OpenROAD 4.1. Once an application has been
converted to OpenROAD 4.1, it can no longer be accessed, developed, or run
from within OpenROAD 3.5. The application developer who is responsible for
converting an OpenROAD 3.5 application to 4.1 should export the OpenROAD
3.5 application from within an OpenROAD 3.5 environment as a form of backing
up the application prior to OpenROAD 4.1 conversion.

Rule 2
Within a userclass hierarchy, all inherited attributes and methods must have
identical properties to those of the parent superclass. This rule means that for a
userclass derived from another userclass, each of the derived userclass's
inherited attributes and methods must have the same datatype, nullability, and
encapsulation as the derived userclass's superclass. From within the OpenROAD
3.5 application editor, the application developer will need to verify that this rule
is satisfied BEFORE the application is ever accessed by the OpenROAD 4.1
workbench. The OpenROAD 4.1 workbench disallows completely the ability to
change properties of inherited attributes and methods.

Rule 3

6–2 Release Summary

Rule 3
Prior to accessing any component of an application created by OpenROAD 3.5
with OpenROAD 4.1, the 3.5 application needs to be completely recompiled by
OpenROAD 4.1. OpenROAD 4.1 can access a 3.5 application that already exists
in a database. One may also use OpenROAD 3.5 to export the application, and
use OpenROAD 4.1 to import the application into another database. At this point
all applications and included applications need to be completely recompiled by
the OpenROAD 4.1 compiler.

Virtual Key Values 7–1

Chapter

7 Virtual Key Values

Virtual Key Values
The KeyDown and ChildKeyDown events return values that correspond to the
following table of values. Each virtual key that can be returned is listed here
along with its corresponding HEX and decimal value.

Virtual Key Virtual Key Virtual Key

VK_BACK 0x08 8 VK_TAB x09 9 VK_RETURN 0x0D 13

VK_SHIFT 0x10 16 VK_CONTROL 0x11 17 VK_PAUSE 0x13 19

VK_CAPITAL 0x14 20 VK_ESCAPE 0x1B 27 VK_SPACE 0x20 32

VK_PRIOR 0x21 33 VK_NEXT 0x22 34 VK_END 0x23 35

VK_HOME 0x24 36 VK_LEFT 0x25 37 VK_UP 0x26 38

VK_RIGHT 0x27 39 VK_DOWN 0x28 40 VK_SELECT 0x29 41

VK_PRINT 0x2A 42 VK_INSERT 0x2D 45 VK_DELETE 0x2E 46

VK_HELP 0x2F 47 VK_0 0x30 48 VK_1 0x31 49

VK_2 0x32 50 VK_3 0x33 51 VK_4 0x34 52

VK_5 0x35 53 VK_6 0x36 54 VK_7 0x37 55

VK_8 0x38 56 VK_9 0x39 57 VK_A 0x41 65

VK_B 0x42 66 VK_C 0x43 67 VK_D 0x44 68

VK_E 0x45 69 VK_F 0x46 70 VK_G 0x47 71

VK_H 0x48 72 VK_I 0x49 73 VK_J 0x4A 74

VK_K 0x4B 75 VK_L 0x4C 76 VK_M 0x4D 77

VK_N 0x4E 78 VK_O 0x4F 79 VK_P 0x50 80

VK_Q 0x51 81 VK_R 0x52 82 VK_S 0x53 83

7–2 Release Summary

Virtual Key Virtual Key Virtual Key

VK_T 0x54 84 VK_U 0x55 85 VK_V 0x56 86

VK_W 0x57 87 VK_X 0x58 88 VK_Y 0x59 89

VK_Z 0x5A 90 VK_NUMPAD0 0x60 96 VK_NUMPAD1 0x61 97

VK_NUMPAD2 0x62 98 VK_NUMPAD3 0x63 99 VK_NUMPAD4 0x64 100

VK_NUMPAD5 0x65 101 VK_NUMPAD6 0x66 102 VK_NUMPAD7 0x67 103

VK_NUMPAD8 0x68 104 VK_NUMPAD9 0x69 105 VK_MULTIPLY 0x6A 106

VK_ADD 0x6B 107 VK_SEPARATOR 0x6C 108 VK_SUBTRACT 0x6D 109

VK_DECIMAL 0x6E 110 VK_DIVIDE 0x6F 111 VK_F1 0x70 112

VK_F2 0x71 113 VK_F3 0x72 114 VK_F4 0x73 115

VK_F5 0x74 116 VK_F6 0x75 117 VK_F7 0x76 118

VK_F8 0x77 119 VK_F9 0x78 120 VK_F10 0x79 121

VK_F11 0x7A 122 VK_F12 0x7B 123 VK_F13 0x7C 124

VK_F14 0x7D 125 VK_F15 0x7E 126 VK_F16 0x7F 127

VK_F17 0x80 128 VK_F18 0x81 129 VK_F19 0x82 130

VK_F20 0x83 131 VK_F21 0x84 132 VK_F22 0x85 133

VK_F23 0x86 134 VK_F24 0x87 135 VK_NUMLOC
K

0x90 144

VK_SCROLL 0x91 145 VK_LSHIFT 0xA0 160 VK_RSHIFT 0xA1 161

VK_LCONTROL 0xA2 162 VK_RCONTROL 0xA3 163 VK_LMENU 0xA4 164

VK_RMENU 0xA5 165

	Release Summary
	Contents
	Chapter 1: OpenROAD 4.1/0109 Enhancements
	Installer Enhancements
	Installation of the Application Server
	Upgrade of Enterprise Access
	Installation of JDBC
	Running VASA in a Runtime-only Installation
	Determining Whether a Reboot Is Recommended
	Installation of Thin Client Demos

	Speed Keys Supported
	New System Classes
	DecimalObject Class
	Precision Attribute
	Scale Attribute
	Value Attribute

	KeyDownData Class
	IsExtended Attribute
	Modifiers Attribute
	PreviousState Attribute
	ScanCode Attribute
	VirtualKey Attribute

	New Events
	ChildKeyDown Event
	KeyDown Event

	New Attributes
	EntryField Class
	ExitBehavior Attribute

	FrameExec Class
	NextTargetField Attribute

	Object Class
	InstanceIdentifier Attribute
	InstanceReferences Attribute

	SessionObject Class
	ProcessWait Attribute
	ProcessWindow Attribute

	New Methods
	LongByteObject Class
	ConvertFromString Method

	StringObject Class
	ConvertFromBinary Method

	Application Server
	Authorized Applications Only
	Forced Shutdown
	DPO
	SPO Launch Permissions

	Workbench
	Application Workbench Frame
	Edit Connections Profile Frame
	Script Editor Frame
	Reporter Query Editor Frame
	Reporter Component

	OpenROAD Runtime
	ExtObjects
	Reporter
	TableFields

	Demos
	UNIX
	Windows

	VASA
	SPO Details Pane
	ASO Details Pane
	Disable New Connections
	Auto-Suspend
	Stateless Application Housekeeping
	User-Defined Procedure - iiasohousekeep
	Support for RP_LOCAL

	ASOLIB
	COM Errors
	NameServer
	XML-in
	XML-out
	Pre-process, post-process User-Written Routines for XML-in, XML-out
	Load Balancing

	UNIX

	Chapter 2: OpenROAD 4.1 New Features
	Property Option Menu Enhancements
	TableField Enhancements
	Keystroke Events on EntryFields
	Auto-completion for OptionFields
	New Field Styles
	SizeGrip
	True Type Fonts
	Button Styling
	Progress Bars
	Group Boxes
	Wizard Frames
	Icon Images
	24-bit Color Bitmaps
	System Color Remapping
	RGB Color support
	
	RGB Function

	Drag and Drop
	Standard Toolbars Bitmaps
	Flat Toolbars with Hot tracking
	Spin Controls
	Date Picker
	CompositeField Enhancements
	ActiveX Error Handling Enhancements
	Userclass Object Allocation Limit Increase
	Report Writer Conversion to OpenROAD
	StackField Separator (Screen divider)
	Minimizing Informational Messages in Trace Windows
	Destroy a Single Component Flag in DestroyApp
	Reporter API Documentation
	Make Defining Break Columns Optional in Reporter
	New OpenROAD Workbench Startup Options

	Chapter 3: OpenROAD 4.1 Demo Overview
	Active Server Page Demo
	SISUI Demo
	Meeting Point Tutorial Demo
	Object Factory Demo

	Chapter 4: Application Server Support for OpenROAD 4.1
	Utilizing COM
	4GL Remote Procedure Calls
	Automation Types
	Fixed Signature, Dynamic Data
	Structured Data
	The Remote Server Object
	The Parameter Data Object
	The 4GL REMOTESERVER System Class
	Private Server, Shared Server
	Visual ASA
	Application Server Object Library (ASOLib)

	Chapter 5: Reporter Enhancements
	Enhanced Runtime Support
	Changes to Reporter
	Main Menu
	Query Editor
	Variable List Frame
	Variable Properties Frame
	Print Dialog
	Reporter Procedure Tool
	Reports Using Image Trim

	Report Procedure Tool
	Dynamic Procedure List
	Database/Application Information
	Report List
	Menu Bar
	File
	View
	Reports
	Images
	Options

	Tutorial
	Before You Begin
	Using the Procedure Tool
	File Names
	Saving Report Procedures
	Running Report Procedures
	Importing Reports to Target Applications
	Working With Image Trim
	Image Directories
	Image Servers

	Call Interface to Dialog Frames and Reporter Procedures
	Calling via Dialog Frame
	Optional Parameters

	Calling A Report Procedure
	Required Parameters
	Optional Parameters

	Chapter 6: Upgrading from OpenROAD 3.5 to 4.1
	Rule 1
	Rule 2
	Rule 3

	Chapter 7: Virtual Key Values
	Virtual Key Values

